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ABSTRACT
Game theoretic approaches to patrolling have become a topic
of increasing interest in the very last years. They mainly
refer to a patrolling mobile robot that preserves an environ-
ment from intrusions. These approaches allow for the de-
velopment of patrolling strategies that consider the possible
actions of the intruder in deciding where the robot should
move. Usually, it is supposed that the intruder can hide and
observe the actions of the patroller before intervening. This
leads to the adoption of a leader-follower solution concept.
In this paper, mostly theoretical in its nature, we propose an
approach to determine optimal leader-follower strategies for
a mobile robot patrolling an environment. Differently from
previous works in literature, our approach can be applied to
environments with arbitrary topologies.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents

General Terms
Algorithms

Keywords
Leader-follower strategies, robotic patrolling

1. INTRODUCTION
Game theoretic approaches to patrolling have become a

topic of increasing interest in the last few years [1, 2, 12,
13]. The basic setting considers a patrolling mobile robot
with the goal to preserve an environment from intrusions.
The robot has some ability to detect the intruder and the
intruder can hide and observe the robot patrolling the envi-
ronment before attempting to intrude. Use of game theory
enables the development of patrolling strategies that con-
sider the possible actions of the intruder in deciding where
the robot should move. This usually grants the patrolling
robot a larger expected utility than adopting a purely ran-
dom strategy [2]. The fact that the intruder can observe
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the patroller before acting leads to the adoption of a leader-
follower solution concept [19] for the game that models the
interaction between the patroller and the intruder.

In this paper, we propose an approach to determine opti-
mal leader-follower strategies for a mobile robot patrolling
an environment. Extending recent works in literature [1,
12, 13], our approach can be applied to environments with
arbitrary topologies. In particular, we represent the envi-
ronment as a set of connected cells that can be traversed
by the robot and that may have different values for the pa-
troller and the intruder. The main original contributions of
this paper are the following ones.

• We model patrolling in these environments as a two-
player (i.e., the patroller and the intruder) extensive-
form game with imperfect information and infinite hori-
zon. The patroller’s actions are movements between
connected cells, while the intruder can wait hidden
and observe the patroller or can attempt to intrude
in a cell. Payoffs of the game are calculated according
to the values of the cells for the two agents. We show
that the leader-follower solution of this game is the op-
timal patrolling strategy for the mobile robot, giving it
the maximum expected utility.

• Since to the best of our knowledge literature does not
provide any method for finding a leader-follower strat-
egy in extensive-form infinite-horizon games, we pro-
pose an approach that introduces symmetries in the
patroller’s strategies. Symmetries come down to link-
ing the strategy of the patroller to the history H of its
last |H | actions.

• We formulate a bilinear mathematical programming
problem to find the optimal patroller’s strategy when
|H | = 1, namely when the patroller operates under a
Markov hypothesis.

• We provide some ways to reduce the complexity of
finding a solution by simplifying the mathematical pro-
gramming problem to be solved.

• Finally, we discuss the relation between the optimal
value for |H | and the topology of the environment.

This paper is structured as follows. The next section re-
views the relevant related work. Section 3 presents our game
model and our approach to its solution. Sections 4 and 5
describe some ways to reduce the complexity of solving our
model and some of its extensions, respectively.
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2. GAMES FOR SECURITY
WITH MOBILE ROBOTS

A patrolling situation is characterized by one or more pa-
trollers and by some targets to be patrolled. The interest
in studying patrolling situations outside purely geometrical
approaches (like those for the art gallery problem) emerges
when, due to the characteristics of the setting (e.g., sensor
range of the patrollers and time needed by an intruder to
penetrate an area), the patrollers cannot employ a deter-
ministic strategy, otherwise the intruder will surely succeed
in attacking a target. As a result, patrollers should adopt an
unpredictable patrolling strategy, randomizing over the tar-
gets and trying to reduce the intrusion probability. Some
patrolling strategies of this type have been developed in
mobile robotics [11, 14], but they usually do not consider
any explicit model of the adversary, i.e., the intruder. Only
very recently, adversaries have been taken into account in
the development of patrolling strategies for mobile robots.
As shown in [2], strategies that consider models of adver-
saries give the patrolling robot a larger expected utility than
strategies that do not. Two are the main methods proposed
in literature for robotic patrolling with adversaries: one does
not explicitly model the preferences of the adversaries [1],
whereas the other one does [12, 13]. Before briefly review-
ing these methods, we note that similar strategic problems
have been addressed in the pursuit-evasion field (e.g., [8,
18]). However, some assumptions, including the fact that
the evader’s goal is only to avoid capture and not to enter
an area of interest and the fact that the evader usually knows
only the current position of the pursuer but not its strategy,
make the pursuit-evasion strategies not directly applicable
to our patrolling scenario.

The work proposed in [13] explicitly considers the prefer-
ences of the adversary, as we do in this paper. The authors
deal with the problem of patrolling n areas by using a single
patroller such that the number of turns it would spend to pa-
trol all the areas is strictly larger than the penetration time d

of the intruder, i.e., the time needed by the intruder to enter
an area. They model such a problem as a two-player (i.e.,
the patroller and the intruder) strategic-form game with in-
complete information (i.e., the intruder’s preferences over
the areas can be uncertain to the patroller) [6]. The ac-
tions available to the patroller are all the possible routes of
d areas, while the intruder chooses a single area to enter.
The intruder is assumed to be in the position to repeatedly
observe the actions of the patroller (staying hidden), de-
rive a correct belief on the patroller’s strategy, and find its
best response given the patroller’s strategy. The appropri-
ate equilibrium concept, in which the patroller maximizes
its expected utility, is the leader-follower equilibrium [19].
(A slight variation of this approach has been applied to the
problem of patrolling n access points with m < n static
checkpoints at the Los Angeles International Airport [15].)
As discussed in [7], the approach in [13] presents two draw-
backs. First, since it does not consider the time spent by
the robot to move between two areas, the model is appli-
cable only in environments with fully connected topologies.
Second, to avoid game theoretical inconsistencies, the deci-
sions of the patroller must be over the next area, and not
over the next route, to patrol. A comparison between our
model and that in [13] is presented in Section 5.

A different method, where the preferences of the adver-

sary are not taken into account, is employed in [1]. The
problem considered in this case is to patrol a perimeter di-
vided in cells by employing a team of synchronized mobile
robots moving by at most one cell at each discrete turn.
The proposed patrolling strategy is the one that maximizes
the minimum expected utility for the patrollers or, equiv-
alently, that max-minimizes the detection probability over
the cells. This work is applicable to very special ring-like
environments where the penetration time is the same for all
the cells and the patrollers have no preferences over them.
The produced strategy is optimal when also the intruder has
no preferences over the cells.

The attempt we make in this paper is to combine and
improve the strategic approach proposed in [13] and refined
in [7] and the approach proposed in [1]. Specifically, we en-
rich the models presented in [7, 13] by modeling the move-
ment of the patroller in environments with arbitrary topolo-
gies. We also enrich the model presented in [1] by allowing
a generic environment topology, considering agents’ prefer-
ences, and generalizing the patroller’s sensing capabilities.

3. AN EXTENSIVE-FORM GAME FOR
ROBOTIC PATROLLING

3.1 Scenario, Assumptions, and Objective
The model we propose captures adversarial robotic pa-

trolling settings based on the following assumptions:

• time is discretized in turns (as in [1, 13]);

• there is a single patrolling robot equipped with a sensor
(e.g., a camera) able to detect intruders (as in [12, 13]);

• the environment is discretized in cells and its topology
is represented by a directed graph (as in [1]);

• the intruder cannot do anything else for some turns
once it has attempted to enter a cell (this amounts to
say that penetration takes some time, as in [1, 13]).

The patroller’s goal is to detect the intruder. If this hap-
pens, we say that the intruder has been “captured” by the
patroller. The final goal of the proposed game-theoretic ap-
proach is to find the optimal strategy the patrolling robot
should follow to detect effectively the intruder.

3.2 Robotic Patrolling Game Model
In this section we introduce the proposed model. In turn,

we formally describe the environment where the patroller
and the intruder act, the patroller’s movement and sensing
capabilities, and the game mechanism.

The environment is composed of a set C of n cells to be
patrolled, whose topology is given by a directed graph G.
We represent G by a matrix T (n× n), where ti,j = 1 means
that cells i and j are adjacent (the patroller can go from i
to j with one action) and ti,j = 0 means that they are not.
In the former case, we say that cells i and j are directly
connected. A cell may represent an access point to an area
with some value (e.g., a door as in [1]) or an area with some
value (e.g., an house as in [13]). Finally, each cell i requires
the intruder di > 0 turns to enter.

We assume a simple movement model for the patroller:
it spends one turn to move between two cells directly con-
nected in G and patrol the arrival cell. This model could be
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easily extended to capture the time spent by the patroller
to reverse the movement direction, as done in [1]. The sens-
ing capabilities of the robot are captured by introducing a
matrix V (n × n) where vi,j = 1 if cell j can be sensed by
the patroller from cell i and vi,j = 0 otherwise. Given that
the patroller is in cell i, we say that it senses all the cells
j for which vi,j = 1. Matrix V allows one to combine the
sensing capabilities of the patroller with the topology of the
environment. When the patroller can sense only its current
cell, V is the identity matrix. The model could be easily
extended to account for the uncertainty of the sensors, by
letting V represent the probability that the patroller can
sense the intruder from a given cell.

The game we employ to model the above scenario is a two-
player extensive-form game with imperfect information. In
particular, we use a two-player dynamic repeated game [6],
where the players are the patroller and the intruder. (The
game can be represented also as a partially-observable stochas-
tic game with infinite states.) At each turn, a strategic-form
game is repeated in which the players act simultaneously.
The patroller chooses the next cell to move to among those
directly connected to its current cell; formally, called i the
current cell of the robot, its actions are move(j), such that
ti,j = 1. The intruder, if it has not previously attempted
to enter any cell, chooses whether or not to enter a cell
and, in the former case, what cell to enter; formally, its ac-
tions are wait and enter(i). If, instead, the intruder has
previously attempted to enter a cell i, it cannot take any
action for di turns after decision. This repeated game is
dynamic since it changes at each turn: the positions of the
patroller (i.e., its current cell) and of the intruder (i.e., try-
ing to get inside a cell or waiting) change. The game is
with imperfect information since, when the patroller acts,
it does not know whether the intruder is currently within a
cell or is waiting to attack. The game has an infinite hori-
zon, since the intruder is allowed to wait indefinitely out-
side the environment. The possible outcomes of the game
are: intruder-capture, when the intruder attempts to enter a
cell i at t and the patroller senses cell i in the time interval
{t, t + 1, . . . , t + di − 1}; penetration-i, when the intruder
enters a cell i at t and the patroller does not sense cell i in
the time interval {t, t + 1, . . . , t + di − 1}; no-attack, when
the intruder never enters any cell.

Agents’ payoffs are defined as follows. We denote by
Xi and Yi (with i ∈ {1, 2, . . . , n}) the payoffs to the pa-
troller and to the intruder, respectively, when the outcome is
penetration-i. We denote by X0 and Y0 the payoffs to the pa-
troller and to the intruder, respectively, when the outcome is
intruder-capture. For the sake of simplicity, we assume that,
when the outcome is no-attack, the payoff to the patroller
is X0 and the payoff to the intruder is 0. (The rationale
is that, when the intruder never enters, it gets nothing and
the patroller preserves values of all the cells. However, other
situations, including when the intruder has an incentive to
enter, could be easily captured.) Consistency constraints
over these values are: Xi ≤ X0 and Y0 ≤ 0 ≤ Yi for all
i ∈ {1, 2, . . . , n}. Furthermore, our model can capture the
possibility that the intruder’s payoffs are uncertain to the
patroller. According to the Harsanyi transformation [6], the
intruder i can be of different types θi(k), each one charac-
terized by a particular set of payoffs. Each type θi(k) is
associated to a probability ωi(k). However, in the following,
we will consider the single type case.

An example of a patrolling setting captured by our model
is shown in Fig. 1. The bold numbers identify the cells;
black blocks are obstacles; the values reported in cell i are
(Xi, Yi) and di. The values (X0, Y0) are (1,−1). Note that
the payoffs to the patroller are given in such a way that it
prefers the intruder entering cell 04 rather than cell 05 (this
is equivalent to say that cell 04 contains“less value”than cell
05). Note also that cells 04, 05, and 10 have some interest
for the intruder (for them, Yi > 0). We call them targets.

(1,0) (1,0) (1,0) (.8,.4)

(.7,.5) (1,0)

(1,0) (1,0) (1,0) (.8,.4)

d07 = 1 d08 = 1 d09 = 1 d10 = 5

d05 = 4 d06 = 1

d01 = 1 d02 = 1 d03 = 1 d04 = 6

01 02 03 04

05 06

07 08 09 10

Figure 1: A patrolling setting

Finally, note that, although the model presented here
shares some similarities with that in [2], the approaches to
their solutions are completely different.

3.3 Leader-Follower Equilibrium
The intruder’s ability to observe the patroller’s strategy

and act on the basis of such observation “naturally” induces
a leader-follower situation, where the patroller is the leader
and the intruder is the follower. The peculiarity of leader-
follower equilibrium is that the leader commits to a strategy
and the intruder acts as a best responder given such com-
mitment.1 In [19] the authors show that in a two-player
strategic-form game the leader never gets worse by com-
mitting to a leader-follower strategy than by playing a Nash
equilibrium strategy. However, to the best of our knowledge,
there is not any similar result for extensive-form games such
as the one we are dealing with. In this section we extend
the result presented in [19] to our context.

First, we consider the patroller’s strategy in absence of any
commitment, later we will show that the patroller never gets
worse when it commits to a leader-follower strategy. The ap-
propriate solution concept for an extensive-form game with
imperfect-information is the sequential equilibrium [10]. This
is a refinement of the Nash equilibrium where, given the se-
quential structure of the game, the strategies are guaranteed
to be rational (sequential rationality) and the beliefs to be
consistent with the agents’ optimal strategies (Kreps and
Wilson’s consistency). The presence of an infinite horizon
complicates the study of the game. Typically, in presence of
an infinite horizon, a game is studied by introducing sym-
metries, e.g., an agent will repeat a given strategy each K
turns. (A classical example can be found [16].)

In our specific case, we introduce the history H = 〈a1, a2,

. . . , a|H|〉, defined as the sequence of the last |H | actions
taken by the patroller. With a slight notation overload, we
will use H also to denote the sequence of last |H | cells visited
by the patroller; namely H = 〈c1, c2, . . . , c|H|〉, where ci is
the cell reached by the patroller with action ai =move(ci),
starting from cell ci−1. Note that c|H| is the current cell

1
Rigorously speaking, the follower is not just a best responder: in or-

der to have an equilibrium, if it is indifferent between some actions, it
should choose the one that maximizes the patroller’s expected utility.
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of the patroller. Being our game with infinite horizon, the
length of H can be infinite. Introducing symmetries amounts
to consider that, in the patroller’s strategies, the next action
is selected on the basis of the last |H | actions, with |H | fi-
nite and constant during all the game. For instance, when
|H | = 0, each action in the patroller’s strategy does not
depend on previously taken actions. Namely, the probabil-
ity to visit a cell does not depend on the (adjacent) cell
where the patroller currently is. When |H | = 1 the patroller
chooses its next action on the basis of its last action and
then its strategy is Markovian. In this case, the selection
of the next cell to visit depends on the current cell of the
patroller. Reasonably, when increasing the value of |H |, the
expected utility of the patroller never decreases. Further-
more, there exists an upper bound for |H |, say |H|, such
that for any |H | ≥ |H| the patroller’s expected utility keeps
constant. We show some preliminary results on the relation
between |H | and the topology of the environment in Sec-
tion 5. On the other hand, when increasing the value of
|H |, the computational complexity for finding a patrolling
strategy increases too. This imposes a trade-off between
expected utility and computational effort in selecting |H |.

Given a value for |H |, the game can be reduced to a
strategic-form game. This is because the game repeats every
|H | turns. Therefore, we can consider a reduced game that
is |H |-turn long and constrain agents’ possible strategies to
be indefinitely repeated. In our case, the patroller’s strate-
gies will be of the form αH,move(j), i.e., the probability to
execute action move(j) given an history H . The intruder’s
strategies during the game can be conveniently represented
by using the following macro-actions: enter-when(H, j) and
stay-out, where j is the cell to enter and H is the history of
the patroller. Action enter-when(H, j) corresponds to make
wait while it observes that the patroller has not followed his-
tory H and then to make enter(j); stay-out corresponds to
make wait forever.

In the following we show that the appropriate solution
concept for our game is the leader-follower equilibrium. In-
deed, when the leader (in our case the patroller) commits
to a leader-follower equilibrium it cannot obtain a worse ex-
pected utility than the one it would obtain from a sequential
equilibrium. We state it in the following theorem.

Theorem 3.1. Given the finite-horizon game described
above with a fixed |H |, the leader never gets worse when
committing to a leader-follower equilibrium strategy.

Proof. The finite-horizon game we derive by introducing
symmetries can be easily translated into a strategic-form
game [6]. If the leader does not commit to a strategy, it
receives the utility prescribed by a sequential equilibrium
of the game. This equilibrium is a specific Nash equilib-
rium of the strategic-form game. By von Stengel and Za-
mir [19], in any two-player strategic-form game, the worst
leader-follower equilibrium is not worse than the best Nash
equilibrium, and therefore, in our case, the worst leader-
follower equilibrium is not worse than any sequential equi-
librium. The thesis of the theorem follows. �

Hence, we can say that the leader-follower equilibrium
is the appropriate solution concept for our finite-horizon
game and that the corresponding strategy for the patroller
is the optimal patrolling strategy for the setting we consider.
Given a value for |H |, the leader-follower strategy gives the
patroller the maximum expected utility.

3.4 Mathematical Programming Formulation
under Markov Hypothesis

In this section, we formulate the problem of determin-
ing the optimal patrolling strategy as a mathematical pro-
gramming problem. Its solution can be obtained using op-
timization software tools, e.g., [17]. According to game the-
ory, a solution for the game we have defined for a given
|H | is a strategy profile σ∗ = (σ∗p, σ∗i ) where σ∗p is the
strategy of the patroller (playing as the leader) and σ∗i is
the strategy of the intruder (playing as the follower), that
are in a leader-follower equilibrium. The literature pro-
vides algorithms for finding leader-follower equilibria only
in strategic-form games by solving a multi-linear program-
ming problem [4]. At the equilibrium, the follower em-
ploys pure strategies [19]. More precisely, the follower will
play the best response for the strategy the leader commit-
ted to. Thus, for each pure strategy σi = a, with a ∈
{enter-when(H, j), stay-out}, it is possible to compute the
patroller’s strategy that maximizes EUp(BRi = a), assum-
ing that σi = a is the best response for the intruder. With
this method, there are as many optimization problems as the
pure strategies of the intruder and each single optimization
problem is linear. The patroller will induce the intruder to
follow the strategy a such that EUp(BRi = a) is maximum.
In [12], the authors proposed an alternative mathematical
programming formulation based on mixed integer linear pro-
gramming that is more efficient with more intruder’s types.
Since we study single intruder’s type settings, we do not
employ this formulation.

In what follows we provide a mathematical programming
formulation for our model when |H | = 1. (This is because,
as we will show, formulations with |H | = 0 are not gener-
ally applicable to realistic environment topologies and for-
mulations with |H | > 1 can be obtained easily by extending
the case with |H | = 1.) In this case, the Markov hypoth-
esis holds and the patroller’s strategy {α〈i〉,move(j)} can be
compactly represented by the set {αi,j} ∀i, j ∈ C, where
each αi,j denotes the probability for the patroller to move
from cell i to cell j. The mathematical formulation we pro-
vide is a multi-bilinear problem [3]. More precisely, given
a pure strategy σi = a, the maximization of the patroller’s
expected utility is linear in the objective and bilinear in the
constraints. The complexity of the optimization problem is
due to the non linearity introduced by considering symme-
tries in our game model. More precisely, non-linearity comes
from the need to constrain behavioral strategies2 to be equal
in the same state, i.e., αi,j is fixed for all the decision nodes
for which the patroller’s current cell is i. (The formulation
we provide is inspired to the sequence-form proposed in [9].)

We denote by γ
h,w
i,j the probability that the patroller reaches

cell j in h steps, starting from cell i and not passing through
cell w. For the sake of presentation, we assume all dis to be
equal to d. Extension to the general case is straightforward.
Our solving algorithm develops into two stages.

In the first stage we check whether there exists at least
one patroller’s strategy such that stay-out is a best response
for the intruder. If such a strategy exists, then the patroller
will follow it, being its payoff maximum when the intruder
abstains from the intrusion (recall that X0 ≥ Xi for all i).
This stage is formulated as the following bilinear feasibility

2
We recall that a behavioral strategy of an agent in a given decision

node is the strategy conditioned by the agent being at such node.
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problem in which αi,js are the decision variables (C \ i is the
set obtained by removing the element i from C):

αi,j ≥ 0 ∀i, j ∈ C (1)
X
j∈C

αi,j = 1 ∀i ∈ C (2)

αi,j ≤ ti,j ∀i, j ∈ C (3)

γ1,w
i,j = αi,j ∀w, i, j ∈ C, j �= w (4)

γh,w
i,j =

X
x∈C\w

“
γh−1,w

i,x αx,j

” ∀h ∈ {2, . . . , d},

∀w, i, j ∈ C, j �= w
(5)

Y0

0
@1−

X
i∈C\w

γ
d,w
z,i

1
A + Yw

X
i∈C\w

γ
d,w
z,i ≤ 0 ∀z, w ∈ C (6)

Constraints (1)-(2) express that probabilities αi,js are well
defined; constraints (3) express that the patroller can only
move between two adjacent cells; constraints (4)-(5) express
the Markov hypothesis over the patroller’s decision policy;
constraints (6) express that no action enter-when(z, w) gives
to the intruder an expected utility larger than that of stay-out.
(Note that, with |H | = 1, intruder’s action enter-when(H, j)
reduces to enter-when(i, j), where i is the current cell of the
patroller.) The non-linearity is due to constraints (5). If
the above problem admits a solution, the resulting αi,js are
the optimal patrolling strategy. When the above problem is
unfeasible, we pass to the second stage of the algorithm.

In the second stage, we find the best response of the in-
truder such that the patroller’s expected utility is maximum.
This is formulated as a multi-bilinear programming problem.
The single bilinear problem, in which enter-when(s, q) is as-
sumed to be the intruder’s best response, is defined as:

max Xq

X
i∈C\q

γ
d,q
s,i + X0

0
@1−

X
i∈C\q

γ
d,q
s,i

1
A

s.t.

constraints (1)-(5)

Y0

0
@1−

X
i∈C\q

γd,q
s,i

1
A + Yq

X
i∈C\q

γd,q
s,i ≥

≥ Y0

0
@1−

X
i∈C\w

γd,w
z,i

1
A + Yw

X
i∈C\w

γd,w
z,i

∀z, w ∈ C (7)

The objective function maximizes the patroller’s expected
utility. Constraints (7) express that no action enter-when(z, w)
gives a larger value to the intruder than action enter-when(s, q).
We can formulate n2 above problems, for all the possible
enter-when(s, q) actions with s, q ∈ C (recall that |C| = n).
If a problem is feasible, its solution is a set of probabilities
αi,js, that define a possible patrolling strategy. From all
the solutions of feasible problems, we pick out the one that
gives the patroller the maximum expected utility. We stress
that a bilinear programming problem can result to be un-
feasible. This can happen when the assumption that action
enter-when(s, q) be the best response is wrong. Indeed, it
can be that for any possible patroller’s strategy there exists
an action, different from enter-when(s, q), which gives the
intruder a better expected utility. However, as discussed
in [19], there exists at least one action of the intruder such
that the corresponding bilinear problem is feasible. Note
that this second stage of the algorithm requires solving n2

problems, each one with O(n3d) variables and constraints.

We report in Fig. 2 the optimal patroller’s strategy for
the setting of Fig. 1, as calculated with the algorithm de-
scribed above, considering that the patroller can sense its
current cell and adjacent cells. The expected utility for the
patroller is 0.845 and the induced best response for the in-
truder is enter-when(01,10), namely to enter cell 10 when
the patroller is in 01. Note that cells 04 and 10 are excluded
from the optimal patrolling strategy. This makes sense, since
the patroller, due to its sensing capabilities, is able to patrol
them from adjacent cells that are more “central” (03 and 09,
respectively). The patroller uses the strategy to select its
actions. For example, whenever the patroller is in cell 01,
it randomly chooses its next action between move(02) and
move(05) with probability 0.49 and 0.51, respectively.

01 02 03 04

05 06

07 08 09 10

0.49

0.51

0.43

0.57

0.65

0

0.35

0

0.38

0.62

0.6

0.40

1 0.6

0.4 0.7

0.3

0

0

Figure 2: Optimal patrolling strategy for Fig. 1

4. IMPROVING EFFICIENCY
In this section we provide some ways to improve the ef-

ficiency of our solving algorithm. The basic idea is that in
realistic settings the number of targets (i.e., cells over which
the intruder has a strictly positive payoff) is usually much
smaller than n (i.e., the number of cells in C). In this cases,
we can reduce the searching space, in terms of the number
of variables and constraints, of the programming problems
stated in the previous section. In the following, we suppose
that the patroller is able to sense only its current cell.

Our simplifying method develops into two steps. Given
a game representing a patrolling scenario, as described in
Section 3.2, in the first step, we check whether the patroller
can capture the intruder by following a deterministic strat-
egy. A deterministic strategy is a sequence of targets such
that all the targets appear in the sequence and no target i is
leaved uncovered for more than di turns when the sequence
is cyclically repeated. We call it “deterministic”, since such
a strategy does not prescribe the patroller to randomize over
the next cell to visit, but it says exactly what is the next
cell to visit. Let us focus on the case wherein every target
has the same penetration time, say d. In this case, searching
for a deterministic strategy can be addressed in the follow-
ing way. At first, we search for a minimum-length sequence
visiting all the targets. This can be calculated by an integer
linear programming problem. Then we check whether no
target is leaved uncovered for more than d turns when the
strategy is cyclically repeated. In the affirmative case, the
found sequence assures the patroller to capture always the
intruder. Otherwise, no deterministic strategy exists and we
apply the second step in which we reduce the number of bi-
linear programming problems to solve, reducing the number
of possible intruder’s best responses and the number of con-
straints per bilinear programming problem. Let us discuss
in more detail these two steps.

A deterministic patrolling strategy starts from a target,
ends in the same target, and covers all the targets. This
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strategy can be efficiently represented as a sequence of inde-
pendent paths, each one connecting a pair of targets. The
minimum-length sequence visiting all the targets is the one
that minimizes the largest number of turns between two
successive visits to a target. To determine it, we use the
following model in which we distinguish the targets from
“common” cells. We consider a triple (C, N, A), where C

is the set of cells, N ⊆ C is the set of targets, and A =
{Ai,j} ∀i, j ∈ N, i 
= j, where Ai,j = {ak

i,j} is the set of

minimum-length paths connecting targets i and j (ak
i,j is

the k-th minimum-length path that can be thought as a di-
rected arc connecting i and j in N). The length of a path is
the number of cells it traverses; for example, in Fig. 3, the
length of the minimum path between targets 06 and 08 is
5. Minimum paths can be determined with the well-known
Dijkstra’s algorithm. For every cell c ∈ C, we introduce a
function gc(·) such that gc(a

k
ij) = 1 if and only if c belongs

to the path ak
i,j and gc(a

k
i,j) = 0 otherwise. Given the above

definitions, the problem of finding a deterministic strategy
can be formulated as an integer linear program. The deci-
sion variables are xk

i,js, with xk
i,j ∈ {0, 1} and xk

i,j = 1 if and

only if path ak
i,j is selected to be part of the deterministic

patrolling strategy and xk
i,j = 0 otherwise. According to this

formulation, a deterministic strategy is given by the union
of all the selected minimum-length paths connecting pairs of
targets, namely {ak

ij |x
k
ij = 1}. The problem of finding a de-

terministic strategy can be formulated as a modified version
of the well-known traveling salesman problem [20]:

min
X
c∈C

X
i,j∈N

|Ai,j |X
k=1

xk
i,jgc(ak

i,j)

s.t.

X
j∈N

|Ai,j |X
k=1

xk
ij = 1 ∀i ∈ N (8)

X
j∈N

|Aj,i|X
k=1

xk
ji = 1 ∀i ∈ N (9)

X
i,j∈S

|Ai,j |X
k=1

xk
ij ≤ |S| − 1 ∀S ⊂ N (10)

The objective is to minimize the total length of the patrol
tour. Constraints (8) and (9) impose that every target is
visited at least once and that for every pair of targets at most
one connecting path can be selected; constraints (10) remove
subtours. For example, in Fig. 3 a deterministic strategy for
the represented setting is shown with gray arrows. Call ui

the maximum number of turns between two successive visits
of target i when cyclically executing a deterministic strategy
determined as above. If ∀i ∈ N, ui ≤ d then a deterministic
strategy is the optimal strategy, assuring that the patroller
will always capture the intruder, if it attempts to enter.

We now discuss the second step of our method. The num-
ber n of cells that compose the environment significantly
affects the computational time of our algorithm. The larger
n, the more the time needed to solve the multi-bilinear prob-
lem, because the number of variables and constraints it in-
volves grows. As it is reasonable to consider, some cells will
be never patrolled at the equilibrium; hence these cells can
be removed from the mathematical programming problem.
This is the basic idea of the second step we propose. Starting
from the integer linear problem above, we introduce decision

variables ycs, with yc ∈ {0, 1} and yc = 1 if and only if cell
c ∈ C belongs to at least one path ak

i,j of the best determin-
istic strategy and yc = 0 otherwise. Then, the significant
set of cells to concentrate on can be determined with the
following integer linear problem:

min
X
c∈C

yc

s.t.

|Ai,j |X
k=1

xk
ij = 1 ∀i, j ∈ N (11)

yc ≥

0
@ X

i,j∈N

|Ai,j |X
k=1

xk
i,jgc(ak

i,j)

1
A /M ∀c ∈ C (12)

The objective is to minimize the number of cells over which
the patroller will randomize. Constraints (11) impose that
for every pair of targets (i, j), one connecting path from i

to j is selected; constraints (12) link the two sets of decision
variables, imposing yc to be equal to 1 if cell c is visited at
least one time in the solution (M is an arbitrary very large
value). The reduced set of cells we can consider is given by
R = {c ∈ C|yc = 1}. Every strategy randomizing over a cell
i ∈ C \ R is non-optimal. Therefore, considering only the
cells in R, we can reduce n and consequently the computa-
tional time. In practice, we can now apply the algorithm of
Section 3.4 only to the cells in R. For example, in the pa-
trolling setting of Fig. 3, the set R is composed of the cells
on the path of the deterministic strategy.

Moreover, we can further improve the efficiency of our al-
gorithm by reducing the number of constraints per bilinear
problem and the number of bilinear problems to be consid-
ered. At first, we can reduce the possible intruder’s best
responses to enter-when(H, z) where z is a target. Then, we
introduce the concept of action dominance for further reduc-
tion. Action enter-when(H ′, z) dominates action enter-when
(H ′′, z) if and only if for every path, for which the patroller
can reach target z starting from c|H′| within dz steps, it
passes through c|H′′|. If an action ξ is dominated by action
ξ′, then the probability for the intruder of being captured
when playing ξ is larger than playing ξ′. For example, in
Fig. 3, the actions enter-when(H, 12) with c|H| = 11 are
dominated by enter-when(H ′, 12) with c|H′| = 06 or with
c|H′| = 18. In this case, we can avoid to solve the bilin-
ear problems associated to (in which the intruder’s best re-
sponses are supposed to be) enter-when(H, 12) with c|H| =
11.

Applying both the reduction of cells (i.e., using the set
R) and the elimination of dominated actions, the number of
bilinear problems to be solved for the setting of Fig. 3 falls
from 292 to 18. Moreover, the computational time for solv-
ing a single bilinear problem for the same setting decreases
from more than 30 minutes to 4.22 minutes on average, when
we model our mathematical programming problems with
AMPL [5] and we solve them by SNOPT 7.2 solver [17] on
a Pentium R 3 GHz 1 GB RAM Linux computer.

5. ENVIRONMENT TOPOLOGY AND |H |

We have seen that finding the solution for our patrolling
game requires to set the length |H | of the history and that
histories longer than a threshold |H | give the patroller the
maximum expected utility. In this section we report some re-
sults on the relation between |H | and the patrolling setting.
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Figure 3: Another patrolling setting

We show that when the environment has a fully connected
topology |H | = 0 and that, for some topologies, |H | > 1.
We initially consider the situation when the topology is fully
connected. We state the following theorem.

1

2 3

α1,2

α1,3α2,1

α2,3

α3,1

α3,2

α1,1

α2,2 α3,3

Figure 4: A setting with fully connected topology

Theorem 5.1. For a fully connected topology, |H | = 0.

Proof sketch. We prove that, in an environment with
fully connected topology, our algorithm produces the same
leader-follower equilibrium when |H | = 0 and |H | = 1. We
consider the basic case with three cells, di = 2 for any
cell i. The proof in the general case with more complex
patrolling settings and |H | > 1 is an easy generalization
and we omit it. Suppose |H | = 1. Fig. 4 shows an ex-
ample of this setting, where 1, 2, 3 are cells and αi,js are
the patroller’s strategy. Consider the bilinear programming
problem of Section 3.4 in which the best response of the
intruder is supposed to be enter-when(1, 2). The objec-
tive function can be written as X2 · (1 − p) + X0 · p where
p = α2,1 + α1,1α1,2 + α1,3α3,2 is the probability to capture
the intruder in cell 2. Since X0 ≥ X2, the maximization
of the objective function can be reduced to the maximiza-
tion of p. The constraints are (a) EUi(enter-when(1, 2)) ≥
EUi(enter-when(2, 2)) and EUi(enter-when(1, 2)) ≥
EUi(enter-when(3, 2)), and (b) EUi(enter-when(1, 2)) ≥
EUi(enter-when(i, j)) for i ∈ {1, 2, 3} and for j ∈ {1, 3}.
Consider the first constraint of (a). It can be written as
(with the same reduction used for the objective function):
α1,2 + α1,1α1,2 + α1,3α3,2 ≤ α2,2 + α2,1α1,2 + α2,3α3,2. The
second constraint of (a) can be written analogously. Since
the objective of the patroller is to maximize α1,2+α1,1α1,2+
α1,3α3,2, we have that the maximum is when either α1,2 =
α2,2 = α3,2 = 0 or αi,j = αk,j for all i, j, k. The first option
is not possible, since it prescribes that the patroller never
patrols cell 2 knowing that the best response of the intruder

is to enter cell 2. Thus, the second option holds. Under this
option, the mathematical problem reduces to the one with
|H | = 0 and therefore they admit the same solution. In the
situation in which constraints (b) are more strict than con-
straints (a), the corresponding problem with |H | = 0 results
unfeasible and there is an action of the intruder such that
the utility expected by p is larger than that expected when
enter-when(1, 2). �

Hence, when the topology is fully connected, the patroller’s
optimal strategy does not depend on the history. The pa-
troller will repeat the same strategy at each turn.

Since by Theorem 5.1 we know that the patrolling strat-
egy obtained with |H | = 0 is optimal for fully connected
topologies, we can compare our model with that discussed
in [12, 13]. For example, consider the setting of Fig. 4 with
a single intruder’s type and d1 = d2 = d3 = 2, X0 = 1,
X1 = X2 = X3 = 0.1, Y0 = −0.3, Y1 = Y2 = Y3 = 0.9.
Adopting the model of [12, 13], the actions available to the
patroller p are the possible routes (sets) of two cells, i.e.,
{1, 2}, {2, 3}, and {3, 1}, whereas the actions available to
the intruder i are the attempts to enter in the three cells,
i.e., 1, 2, and 3. In this model the optimal strategies pre-
scribe that p randomizes uniformly over its three actions,
whereas i can make indifferently one of its three actions.
The utilities expected by p and i are 0.7 and 0.1, respec-
tively. However, in practice, these utilities are not obtain-
able, since i can improve its utility by observing the specific
realization of the patroller and then acting on the basis of
this observation. More precisely, if i waits for a turn ob-
serving the action taken by p and then chooses to enter the
cell just patrolled by p, the utilities expected by p and i

become 0.4 and 0.5, respectively. This leads a rational in-
truder to violate the rules prescribed by [12, 13]. When we
adopt our model, the actions available to p are move(1),
move(2), and move(3), whereas the actions available to i

are enter-when(·, 1), enter-when(·, 2), and enter-when(·, 3),
plus stay-out. The strategies produced by our algorithm
prescribe: p randomizes uniformly over its three actions,
whereas i can make indifferently one of its three actions
enter-when(·, ·). With our approach, the utilities expected
by p and i are 0.6 and 0.28, respectively. Hence, in practice,
our approach gives the patroller a larger expected utility (0.6
vs. 0.4) than that given by the approach in [12, 13].

|H | = 0 holds only for fully connected topologies. With
other topologies, it is generally required that |H | ≥ 1 and
then |H | ≥ 1. In general, the value of |H | depends on the
specific setting and, in particular, on the topology and the
intruder’s penetration times. We report an example to show
that, for some topologies, |H | > 1. Consider Fig. 5 and as-
sume X0 = 1, Y0 = −ε with ε > 0 and arbitrary small.
Note that the targets for the intruder are cells 04, 05, and
10. We assume that the patroller can sense only its current
cell. We show that, for this setting, |H| > 1. The gray ar-
rows in Fig. 5 denote the deterministic patrolling strategy
calculated as shown in the previous section. Its length is 12.
Being as long as the minimum intruder’s penetration time in
a target cell, such deterministic strategy is the optimal pa-
troller’s strategy. The utility expected by p when following
this strategy is 1. Our approach produces this strategy with
a suitable |H | > 1. To prove it, we suppose |H | = 1 and show
that, with this value, our approach does not find the optimal
patrolling strategy. In general, it possible to find a value for
ε such that i will always prefer to enter a cell belonging to
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{04, 05, 10} rather then to stay-out, except when the prob-
ability with which p patrols these cells within di turns is
exactly 1. However, given the environment of Fig. 5, for
each possible strategy with |H | = 1 there is a strictly posi-
tive probability of not patrolling at least one target within di

turns. For example, consider the patroller’s strategy in cell
09, namely {α09,06, α09,08, α09,09, α09,10}. These four prob-
abilities sum up to 1. The only possibility to guarantee
that cell 10 is visited for sure within d10 = 13 turns is that
α09,10 = 1. But, with this value, the patroller will never go
to cell 06 and, consequently, will never visit the other tar-
gets. Hence, α09,10 < 1 and there is a strictly positive prob-
ability to never visit target 10 within 13 turns. Therefore,
the utility expected by p is strictly lower than 1. When,
instead, |H | = 2, it can be easily seen that our approach
finds the optimal strategy.

(1,0) (1,0) (1,0) (.8,.4)

(.7,.5) (1,0)

(1,0) (1,0) (1,0) (.8,.4)

d07 = 1 d08 = 1 d09 = 1 d10 = 13

d05 = 12 d06 = 1

d01 = 1 d02 = 1 d03 = 1 d04 = 14

01 02 03 04

05 06

07 08 09 10

Figure 5: A setting for which |H | > 1

We can state the following result whose proof can be ob-
tained by generalizing the above example.

Theorem 5.2. Given an environment topology, a lower
bound for |H | is the maximum number of visits to the same
cell when following the deterministic strategy.

6. CONCLUSIONS
In this paper, we have presented a game theoretic ap-

proach to determine the optimal patrolling strategy for a
mobile robot that operates in environments with arbitrary
topologies. The approach is based on modeling the pa-
trolling setting as an extensive-form game with imperfect in-
formation and infinite horizon that is solved to find a leader-
follower equilibrium by introducing symmetries (basically,
by letting the patroller’s strategy depend on a history with
a finite length) and resorting to a mathematical program-
ming problem. The patroller’s strategy at the equilibrium
is the optimal strategy for the mobile robot. We have also
discussed some ways to reduce the complexity of the mathe-
matical programming problems and some relations between
the length of the history and the patrolling setting.

In addition to those mentioned along the paper, there is a
broad spectrum of research lines along which this work can
be further refined and expanded. Important issues include:
improving the efficiency of the solving algorithm by exploit-
ing more powerful operational research tools, refining the
patrolling model by considering bounded visibility for the
intruder, and getting more insights on the relation between
|H | and the patrolling setting.
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